	Shen Liang		Recent Photo
Full Name (English):			
Affiliated Institution and Title (English):		Test Center of National University of Defense Technology	
		Associate Research Fellow	

Biography

(Please provide in paragraph form within 500 words.)

Dr. Shen Liang serves as an associate research fellow at National University of Defense Technology. He has published 5 first-author papers in top-tier journals, including ISPRS Journal of Photogrammetry and Remote Sensing and IEEE Transactions on Geoscience and Remote Sensing. He has presided a project of National Natural Science Foundation and participated in 2 major national research initiatives. Additionally, he serves as a reviewer for prestigious journals such as ISPRS and Information Science.

Speech Title (English):

Research on SAR Scene Matching Methods for Robust Guidance under Jamming Conditions

Speech Abstract

(Please provide in paragraph form within 500 words.)

As an advanced terminal guidance technology widely employed, SAR scene matching guidance exhibits advantages of all-day/all-weather operability and high precision. Traditional SAR scene matching methods have focused on improving robustness against speckle noise and geometric/radiometric distortions. However, in recent years, the increasingly severe complex electromagnetic environment faced by precision-guided weapons has significantly degraded the signal-to-interference-and-noise ratio of SAR scenes, submerging image information and rendering conventional methods ineffective for accurate SAR scene matching in positioning and navigation.

To address the anti-jamming requirements of SAR guidance in complex electromagnetic environments, we have conducted research on reference map selection under jamming conditions, anti-jamming matching methods for corrupted scenes, and evaluation methodologies for anti-jamming matching performance. By deeply analyzing typical jamming characteristics and leveraging cutting-edge image processing techniques and deep learning frameworks, we propose a novel metric for evaluating the anti-jamming capability of reference maps, along with robust scene matching methods tailored to jamming patterns and quantitative assessment approaches for anti-jamming effectiveness. These advancements enhance guidance effectiveness in complex electromagnetic environments from the perspective of matching algorithms, offering innovative methodologies to address the unique challenges of SAR scene matching anti-jamming.